Effect of Strain Dependent Cohesive Zone Model on Predictions of Interface Crack Growth
نویسندگان
چکیده
Crack growth along an interface joining an elastic-plastic solid to a solid that does not yield plastically is studied numerically, accounting for mixed mode loading under conditions of small scale yielding. The fracture process is represented in terms of a cohesive zone model, for which the work of separation per unit area and the peak stress required for separation are basic parameters; but where also a plastic strain effect on the fracture process is incorporated. This additional effect is included to model accelerated void nucleation and growth at the interface, resulting from intense plastic straining just in front of the crack tip.
منابع مشابه
A Cohesive Zone Model for Crack Growth Simulation in AISI 304 Steel
Stable ductile crack growth in 3 mm thick AISI 304 stainless steel specimens has been investigated experimentally and numerically. Multi-linear Isotropic Hardening method coupled with the Von-Mises yield criterion was adopted for modeling elasto-plastic behavior of the material. Mode-I CT fracture specimens have been tested to generate experimental load-displacement-crack growth data during sta...
متن کاملSimulation of the Mode I fracture of concrete beam with cohesive models
Crack propagation modeling in quasi-brittle materials such as concrete is essential for improving the reliability and load-bearing capacity assessment. Crack propagation explains many failure characteristics of concrete structures using the fracture mechanics approach. This approach could better explain the softening behavior of concrete structures. A great effort has been made in developing nu...
متن کاملCohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling
The time dependence of fracture has two sources: (1) the viscoelasticity of material behavior in the bulk of the structure, and (2) the rate process of the breakage of bonds in the fracture process zone which causes the softening law for the crack opening to be rate-dependent. The objective of this study is to clarify the differences between these two influences and their role in the size effec...
متن کاملIntersonic crack growth on an interface
Evidence has accumulated recently that a crack can propagate on an interface between dissimilar solids at speeds between the smallest and the largest sonic speeds of the constituent solids. Such an intersonic crack has posed several challenges to the existing theory. Assuming that the crack tip is a structureless point, and the solids are linearly elastic all the way to the crack tip, the theor...
متن کاملCrack Velocity Dependent Toughness in Rate Dependent Materials
Mode I, quasi-static, steady state crack growth is analyzed for rate dependent materials under plane strain conditions in small scale yielding. The solid is characterized by an elastic-viscoplastic constitutive law and the plane ahead of the crack tip is embedded with a rate dependent fracture process zone. The macroscopic work of fracture of the material is computed as a function of the crack ...
متن کامل